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ABSTRACT

This work presents a new methodology for the formulation of discrete chirp Fourier transform (DCFT) algorithms
and it discusses performance measures pertaining to the mapping of these algorithms to hardware computational
structures (HCS) as well as the extraction of chirp rate estimation parameters of multicomponent nonstationary
signals arriving from point targets. The methodology centers on the use of Kronecker products algebra, a
branch of finite dimensional multilinear algebra, as a language to present a canonical formulation of the DCFT
algorithm and its associated properties. The methodology also explains how to search for variants of this canonical
formulation that contribute to enhance the mapping process to a target HCS. The parameter extraction technique
uses time-frequency properties of the DCFT in a modeled delay-Doppler synthetic aperture radar (SAR) remote
sensing and surveillance environment to treat multicomponent return signals of prime length, with additive
Gaussian noise as background clutter, and extract associated chirp rate parameters. The fusion of time-frequency
information, acquired from transformed chirp or linear frequency modulated (FM) signals using the DCFT, with
information obtained when the signals are treated using the discrete ambiguity function acting as point target
response, point spread function, or impulse response, is used to further enhance the estimation process.

For the case of very long signals, parallel algorithm implementations have been obtained on cluster computers.
A theoretical computer performance analysis was conducted on the cluster implementation based on a method-
ology that applies well-defined design of experiments methods to the identification of relations among different
levels in the process of mapping computational operations to high-performance computing systems. The use of
statistics for identification of relationships among factors has formalized the search for solutions to the mapping
problem and this approach allows unbiased conclusions about results.

Keywords: Computer performance evaluation, high performance computing, performance metrics, discrete
chirp Fourier transform, discrete ambiguity function

1. INTRODUCTION

This article presents some results of research works conducted on computational signal algebra techniques for
the design and development of discrete chirp Fourier transform algorithms and the use of these algorithms in the
estimation of point target phase parameters of multicomponet chirp signals in active remote sensing applications
such as synthetic aperture radar (SAR) signal-based information processing. For the algorithm design stage of
the work, the discrete chirp Fourier transform (DCFT) was first analyzed from the point of view of the discrete
Fourier transform of a modulated The general steps involved in the formulation of a Fast Transform are shown
on Figure 1. The formulation of the Transform as an operator is the first step, from this we have to express the
transform as a matrix representation, then the matrix representation is decomposed in several product of sparse
matrices. And finally the implementation in computational structures allow to see how the proposed formulation
works.

This material is based upon work supported by the National Science Foundation under Grant No. 0424546.
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Figure 1. Stages of an Algorithm Development

1.1. Continuous Time Chirp Signal
Chirp signals are prevalent in many engineering and scientific applications such as radar, sonar, and communi-
cations. A continuous real chirp signal, with amplitude A, is defined as follows:

x(t) = A cos
[
1
2
at2 + bt

]
, t ∈ R,

{
b � Initial frequency or carrier frequency
a � Chirp rate

(1)

From Equation 1, an instantaneous angular frequency is obtained by taking the time derivative of the phase
of the sinusoidal signal resulting in dθ(t)

dt = θ̇(t) = at + b. An analytic representation of the continuous chirp
signal may be formulated as follows:

xa(t) = A exp (j
1
2
at2 + bt) = A exp (j

1
2
at2) exp (jbt), (2)

where exp (j 1
2at

2) = d(t) is termed the frequency rate signal factor. The Fourier transform of the signal xa(t) is
given by the expression Xa(Ω) = AD(Ω) � δ(Ω− b). Here, the symbol ”�” denotes linear convolution, and D(Ω)
is the Fourier transform of the frequency rate signal factor.

1.2. Discrete Time Chirp Signal
The discrete version of a real chirp signal, with amplitude A and sampled at a rate of Fs samples per second, is
given by the following expression:

x[n] = A cos
[
1
2
a(n · Ts)2 + b(n · Ts)

]
, n ∈ Z,

⎧⎪⎪⎨
⎪⎪⎩

n � Number of sample
Fs = 1

Ts
� Sampling frequency

b � Initial frequency or carrier frequency
a � Chirp rate

(3)

Following the analytic representation of a continuous chirp signal, and after describing a discrete version of a
real chirp signal, a sampled version of a finite complex chirp signal can be defined in the same fashion. A finite
discrete complex chirp signal of length N is defined by the following expression:

x[n] = A0W
−(k0n+l0n2)
N , n ∈ ZN,

⎧⎪⎪⎨
⎪⎪⎩

n � Number of sample
k0 : Carrier frequency
l0 : Chirp rate
A0 : Amplitude

(4)

Here, W a
N = e−j 2π

N a and j is
√

( − 1). The real part for a complex chirp signal is depicted in Figure 2.
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Figure 2. Chirp Signal

1.3. Multicomponent Discrete Time Chirp Signal

A chirp signal resulting from several individual return chirp signals is termed a multicomponent chirp return
signal. The mathematical expression for K components of a multicomponent chirp signal is defined as

x[n] =
K−1∑
i=0

AiW
−(kin+lin

2)
N + ω[n], n ∈ ZN,

⎧⎪⎪⎨
⎪⎪⎩

n � Number of sample
ki : ith Carrier Frequency
li : ith Chirp Rate
Ai : ith Amplitude

(5)

2. THE DISCRETE CHIRP FOURIER TRANSFORM

Nowadays, the methods and tools for time-frequency signal analysis are becoming more prevalent due to advances
in computational methods and signal processing techniques. A signal is considered a time-frequency signal or a
non-stationary signal, if its spectral characteristics change with time. A promising mathematical tool is the 1-D
Discrete Chirp Fourier Transform (DCFT). Chirp signals are widely used in radar, sonar, and communications
applications.1 The computational complexity DCFT is rather involved and it gets aggravated when the DCFT is
extended to multidimensional domains. The main objective of this work is to present mathematical formulation
of algorithms for time-frequency signal analysis of the 1-D DCFT. The work uses theoretic properties of the input
and output indexing sets, which are treated as abelian groups, in order to identify a proper mathematical frame-
work for the formulation of the algorithms. The numeric computation and scientific visualization MATLAB R©
software package has been used for the development of the algorithms. The 1-D DCFT1 is defined as follows:

Xc[k, l] =
1√
N

N−1∑
n=0

x[n]W ln2+kn
N , 0 ≤ k, l ≤ N − 1 (6)



Two parameters, l and k, are identified in Equation 6 which match the chirp rate l0 and constant frequency
value k0 of a single quadratic chirp at the mainlobe. The k corresponds to the standard spectral parameter of
the discrete Fourier transform (DFT). The l parameter corresponds to the frequency rate parameter. From the
Equation 6, it is possible to express the following representation as an indexing scheme:

Figure 3. Indexation Scheme

As an example of direct computation, Equation 6 is expanded for case of N = 8:

Xc[k, l] = x[0] +W l
NW

k
Nx[1] +W 4l

NW
2k
N x[2]

+W 9l
NW

3k
N x[3] +W 16l

N W 4k
N x[4]

+W 25l
N W 5k

N x[5] +W 36l
N W 6k

N x[6]

+W 49l
N W 7k

N x[7]

(7)

3. THE DCFT AS A TOOL FOR PHASE PARAMETERS ESTIMATION

Modifying the parameters of the signal x[n] which appear in Equation 5, results in the signals x4[n], x5[n], x6[n],
x7[n], x8[n], and x9[n], which, after applying the DCFT transform, as defined by Equation 6, results in the
transformed signals XC4 [k, l], XC5 [k, l], XC6 [k, l], XC7 [k, l], XC8 [k, l], and XC9 [k, l], respectively. The spectral
results are depicted in Figures 4, 5, 6, 7, 8 , and 9, respectively. These Figures show the magnitude of the
DCFT in the output space ( [k, l] plane). The estimated chirp parameters are clearly identified. Each (kn, ln)
component is represented for the multicomponet chirp signal modeling radar returns.
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Figure 4. XC4 − (k0 = 16, l0 = 0); (k1 = 32, l1 = 0); (k2 = 64, l2 = 0)
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Figure 5. XC5 − (k0 = 0, l0 = 16); (k1 = 0, l1 = 32); (k2 = 0, l2 = 64)
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Figure 6. XC6 − (k0 = 16, l0 = 0); (k1 = 32, l1 = 0); (k2 = 64, l2 = 0); (k0 = 0, l0 = 16); (k1 = 0, l1 = 32); (k2 = 0, l2 = 64)
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Figure 7. XC7 − (k0 = 16, l0 = 16); (k1 = 32, l1 = 32); (k2 = 64, l2 = 64)
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Figure 8. XC8 − (k0 = 20, l0 = 30); (k1 = 40, l1 = 60); (k2 = 30, l2 = 70)
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Figure 9. XC9 − (k0 = 50, l0 = 20); (k1 = 100, l1 = 40); (k2 = 100, l2 = 80)



4. THE KRONECKER PRODUCTS PROPERTIES
In this section some definitions and properties of Kronecker products are stated.
Definition 4.1. Let A be an n× p matrix and B an m× q matrix.

A =

⎡
⎢⎢⎢⎣

a0,0 a0,1 . . . a0,p−1

a1,0 a1,1 . . . a1,p−1

...
...

. . .
...

an−1,0 an−1,1 an−1,p−1

⎤
⎥⎥⎥⎦ (8)

then,

A⊗B =

⎡
⎢⎢⎢⎣

a0,0 ·B a0,1 ·B · · · a0,p−1 · B
a1,0 ·B a1,1 ·B · · · a1,p−1 · B

...
...

. . .
...

an−1,0 · B an−1,1 · B · · · an−1,p−1 ·B

⎤
⎥⎥⎥⎦

m·n×p·q

(9)

The m · n× p · q matrix is called the Kronecker product of A and B. It is also called the direct product or
the tensor product. For square matrices the Kronecker products of the matrices A and B can be formulated as
follows:

A⊗B =
[
ak� · B

]
k,�∈Z/R

(10)

Here the matrix A is assumed to be a square matrix of order R and the matrix B is assumed to be of order S.
The order of the product A⊗B is R ·S = N . Let A and C be R×R matrices, and B and D be S×S matrices.
Next, form the tensor products A ⊗ B and C ⊗ D. Then the following result can be obtained through direct
matrix multiplication:

(A⊗B)(C ⊗D) = AC ⊗BD (11)

If we denote IR, IS as identity matrices of order R and S, respectively, we have

(A⊗B) = (A⊗ IS)(IR ⊗B) (12)

From this expression we can see that the action of computing with the matrix (A⊗B) can be performed in two
stages: An action for the computation of (IR ⊗B), followed by an action for the computation of (A⊗ IS).

5. THE DCFT AS A SIGNAL OPERATOR
The set of all the signals of the form:

x : ZN → C

n �→ x[n] (13)

constitutes a signal space denoted by �(ZN ). This signal space is the space of all discrete complex signals of
length equal to N . The DCFT can be formulated as an operator that converts a signal of length N into a signal
of length NbyN .

Ch : �(ZN ) → �(ZN ) × �(ZN )
x �→ XN = Ch {x} (14)

where,

XN [k, l] = (Ch {x}) [k, l] =
1√
N

N−1∑
n=0

x[n]W ln2+kn
N = Xc[k, l], 0 ≤ k, l ≤ N − 1 (15)

From this formulation the DCFT computation can be expressed as a matrix-vector product.



6. THE DCFT MATRIX REPRESENTATION

Taking advantage of the indexing scheme utilized to express the Hadamard product operation between the input
signal and the de-chirp factor, the DCFT can be expressed as a matrix-vector product. The formulation is
initialized utilizing a discrete signal of length N = 8 as an example. Equation 7 can be used as a natural starting
point.

Xc[k, l] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F(8)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0]
x[1]W l

N

x[2]W 4l
N

x[3]W 9l
N

x[4]W 16l
N

x[5]W 25l
N

x[6]W 36l
N

x[7]W 49l
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

Xc[k, l] = Xckn · [x[n] 	N W ln2

N ] (17)

where 	 denotes the Haddamard product. Replacing k with its index variation converts Xckn in a Fourier
Matrix F (N) = FN of order N .

Xckn = F8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 W 1

N W 2
N W 3

N W 4
N W 5

N W 6
N W 7

N

1 W 2
N W 4

N W 6
N 1 W 2

N W 4
N W 6

N

1 W 3
N W 6

N W 1
N W 4

N W 7
N W 2

N W 5
N

1 W 4
N 1 W 4

N 1 W 4
N 1 W 4

N

1 W 5
N W 2

N W 7
N W 4

N W 1
N W 6

N W 3
N

1 W 6
N W 4

N W 2
N 1 W 6

N W 4
N W 2

N

1 W 7
N W 6

N W 5
N W 4

N W 3
N W 2

N W 1
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

From Equation 17, it can be seen that, for l = 0, the DCFT reduces to the DFT. For l 
= 0, the general
formulation of the DTFT is obtained for a discrete signal x ∈ �(ZN ).

7. COMPUTER CLUSTER IMPLEMENTATION OF MODULATED DCFT METHOD

The modulated DCFT method consists of taking the DFT of the Hadamard product of a signal x[n] of length
N and the de-chirp factor with phase proportional to ln2. The DFT, in turn, is computed with any of the many
efficient fast Fourier transform (FFT) algorithms such as the Cooley-Tukey or Gentleman-Sande. This modulated
DCFT method was implemented in a high performance instructional computer cluster at the University of Puerto
Rico, Mayaguez Campus. This implementation uses the flowchart shown in Figure 10. The implementation
utilized the open source FFTW software package FFTW - (http://www.fftw.org) developed by Mateo Frigo.2

Table 1 presents lengths of various discrete signals whose DCFT was computed using the modulated DCFT
method and the FFTW. The table also shows absolute times of computations on the computer cluster.



Figure 10. Flow Chart for cluster implementation of the DCFT

Table 1. Benchmark time comparison for Cluster implementation

Samples Cluster
(seconds)

64 0
128 0.05
256 0.21
512 0.97
1024 4.19
2048 17.72
4096 74.06
8192 310.20

8. KRONECKER FACTORS HADAMARD PRODUCT (KFHP) METHODS FOR
DCFT ALGORTIHM FORMULATION

This section presents two methods for the computation of the DCFT. These methods take advantage of properties
of Kronecker products algebra, a branch of finite dimensional multilinear algebra to decompose into a sequence
of factors the Hadamard product prevalent in the DCFT formulation. In essence, the methods concentrate on
the computation of the Hadamard product of the return signal and the de-chirping or nonlinear demodulation
through iterative methods which help reduce pre-computational storage and data transfer, two major factors
influencing computational burden for very long discrete signals. The first method concentrates on signals whose
length is a power of 2.



The second method treats signals of prime length. This latter method follows the work of Xia3 and Xia1 who
has demonstrated the advantage of using discrete signals of prime length since, for example, the peak value of
the mainlobe of the DCFT of a single quadratic chirp is

√
N times the value of the sidelobes. As presented at the

introduction, an algortihm is defined in this work as a composition of linear operators. Matrix representation of
linear operators are obtained with respect to the standard basis in order to analyze its computational structure
and effect an algorithm formulation. An algorithm, in turn, can be redefined as the decomposition of the matrix
representation of an linear operator into a sequence of factor matrices. A computational method is also defined
as a structured set of algorithms.

8.1. KFHP Power of Two Method for DCFT Computation

The KFHP power of two method is formulated in this section using Equation 17, again, as the starting point.
A great advantage of developing the KFHP power of two method is hat for discrete signals whose length is a
power of two, there exist very efficient algorithms for the computation of the DFT which follows the Hadamard
product in every DCFT computation. The formulation starts as follows:

Let
xlN [n] = x[n] 	N W ln2

N (19)

, and let,

ψlN [n] = W ln2

N = exp

(
− j2πln

2

N

)
(20)

Taking ln2 from ψlN [n], the following matrix can be constructed:

ΨlN [n] =
[
ln2

]
l,n∈ZN

(21)

For the specific length N = 8 the following result is obtained:

Ψl8 [n] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7
0 4 8 12 16 20 24 28
0 9 18 27 36 45 54 63
0 16 32 48 64 80 96 112
0 25 50 75 100 125 150 175
0 36 72 108 144 180 216 252
0 49 98 147 196 245 294 343

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

Performing modulo− 8 arithmetic results in

Ψl8 [n] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7
0 4 0 4 0 4 0 4
0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7
0 4 0 4 0 4 0 4
0 1 2 3 4 5 6 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

Equation 23 is an important result since it presents the quadratic values of the twiddle or phase factors which
can be expressed as a product of sparse matrices. From the matrix ΨlN [n] the matrix C2

lN
[n] can be obtained.

This matrix is the twiddle factor of the quadratic variation of the DCFT. Performing the Haddamard product of
each column of C2

lN
[n] with the discrete signal x[n]. Finally, the calculation of the DFT of the complex sequences.

C2
lN

[n] is given by the following expression for N = 8:



C2
l8 [n] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W 0
8 W 0

8 W 0
8 W 0

8 W 0
8 W 0

8 W 0
8 W 0

8

W 0
8 W 1

8 W 2
8 W 3

8 W 4
8 W 5

8 W 6
8 W 7

8

W 0
8 W 4

8 W 0
8 W 4

8 W 0
8 W 4

8 W 0
8 W 4

8

W 0
8 W 1

8 W 2
8 W 3

8 W 4
8 W 5

8 W 6
8 W 7

8

W 0
8 W 0

8 W 0
8 W 0

8 W 0
8 W 0

8 W 0
8 W 0

8

W 0
8 W 1

8 W 2
8 W 3

8 W 4
8 W 5

8 W 6
8 W 7

8

W 0
8 W 4

8 W 0
8 W 4

8 W 0
8 W 4

8 W 0
8 W 4

8

W 0
8 W 1

8 W 2
8 W 3

8 W 4
8 W 5

8 W 6
8 W 7

8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

To obtain generalization of the C2
lN

[n] matrix, the basic matrix C2
l2

[n] can be used as a starting point:

C2
l2 [n] =

[
1 1
1 W2

]
(25)

with

C2
l4 [n] =

⎡
⎢⎢⎣

1 1 1 1
1 W4 W 2

4 W 3
4

1 1 1 1
1 W4 W 2

4 W 3
4

⎤
⎥⎥⎦ (26)

Applying the permutation matrix P4,2 results in

C2
l4

′
[n] = C2

l4 [n] · P4,2 =

⎡
⎢⎢⎣

1 1 1 1
1 W 2

4 W4 W 3
4

1 1 1 1
1 W 2

4 W4 W 3
4

⎤
⎥⎥⎦ (27)

Proceeding to factor

C2
l4

′
[n] =

⎡
⎢⎢⎣

[
1 1
1 W 2

4

] [
1 0
0 W 1

4

] [
1 1
1 W 2

4

]
[

1 1
1 W 2

4

] [
1 0
0 W 1

4

] [
1 1
1 W 2

4

]
⎤
⎥⎥⎦ (28)

C2
l4

′
[n] =

⎡
⎢⎢⎣

[
1 1
1 W2

] [
1 0
0 W 1

4

] [
1 1
1 W2

]
[

1 1
1 W2

] [
1 0
0 W 1

4

] [
1 1
1 W2

]
⎤
⎥⎥⎦ (29)

Through direct factorization the following Kronecker products decomposition is obtained which resembles a
decomposition of the discrete Fourier transform (DFT) matrix:

C2
l4

′
[n] =

[ [
I2 I2
I2 I2

] [
I2

Dc
4,2

] [
C2

l2
C2

l2

] ]
(30)

Setting R = 2 and S = 2, the following result is obtained

C2
l4

′
[n] = (ones[2] ⊗ I2)T c

2,2(I2 ⊗ C2
l2) (31)

where,



Dc
N,n =

⎡
⎢⎢⎢⎢⎢⎣

1
WN

W 4
N

. . .

W
(n−1)2

N

⎤
⎥⎥⎥⎥⎥⎦

(32)

and

T c
R,S =

[
(Dc

N,R)0

(Dc
N,R)1

]
(33)

Finally,

ones[2] =
[

1 1
1 1

]
(34)

As an example, using for N = 8, R = 4, and S = 2 results in

C2
l8

′
[n] = (ones[2] ⊗ I4)T c

4,2(I2 ⊗ C2
l4) (35)

Through direct computation, a general form of the Equation 35 is formulated as follows:

Theorem 8.1. For N is a power of 2,

C2
lN

′
[n] = (ones[2] ⊗ IN

2
)T c

N
2 ,2(I2 ⊗ C2

l N
2

) (36)

where T c
N
2 ,2

is defined in Equation 33

8.2. KFHP Prime Length Method for DCFT Computation

As stated above, DCFT computation for discrete signals of prime length is of great importance due to the
fact that the mainlobe of quadratic chirps are better estimated. Below a formulation of the Kronecker factors
Hadamard product (KFHP) is developed for discrete signals of prime length.

C3[l] =

⎡
⎣

⎡
⎣ 1 1 1

1 W3 W 2
3

1 W 2
3 W3

⎤
⎦ ,

⎡
⎣ 1 W3 W3

1 W 2
3 1

1 1 W 2
3

⎤
⎦ ,

⎡
⎣ 1 W 2

3 W 2
3

1 1 W3

1 W3 1

⎤
⎦
⎤
⎦ (37)

Using the integer 2 as a generator for the multiplicative group G3,2,4 the following expression is obtained.

G3,2 =
{〈

21
〉
3
,
〈
22

〉
3

}
G3,2 = {2 1}

This expression has the following associated permutation matrix:

PG3,2 =

⎡
⎣

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦
⎤
⎦ (38)



Applying this permutation to all to rows and columns of the C3 matrix results in

C3r[l] =

⎡
⎣ 1 1 1

1 W3 W 2
3

1 W 2
3 W3

⎤
⎦ ,

⎡
⎣ 1 W3 W3

1 W 2
3 1

1 1 W 2
3

⎤
⎦ ,

⎡
⎣ 1 W 2

3 W 2
3

1 1 W3

1 W3 1

⎤
⎦ (39)

This also produces the following result

C3r[l] =

⎡
⎣C3r[0] ·

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , C3r[0] ·

⎡
⎣ 1 0 0

0 W−1
3 0

0 0 W−1
3

⎤
⎦ , C3r[0] ·

⎡
⎣ 1 0 0

0 W−2
3 0

0 0 W−2
3

⎤
⎦

⎤
⎦ (40)

C3r[l] = [C3r[0] ·H3[0], C3r[0] ·H3[1], C3r[0] ·H3[2]] (41)

where,

H3[l] =

⎡
⎣ 1 0 0

0 W−l
3 0

0 0 W−l
3

⎤
⎦ (42)

It is worth noticing that the structure of the C3r [0] matrix resembles a Hankel matrix.

C3r [0] =

⎡
⎣ 1 1 1

1 W3 W 2
3

1 W 2
3 W3

⎤
⎦ (43)

Removing the 0th row and 0th column, the following result is obtained:

C′
3[0] =

[
W3 W 2

3

W 2
3 W3

]
(44)

The process can be repeated for N = 5. The integer 3 can be used as a generator for G5,3.

G5,3 =
{〈

31
〉
5
,
〈
32

〉
5
,
〈
33

〉
5
,
〈
34

〉
5

}
G5,3 = {3 4 2 1}

The following permutation matrix is then associated with this group:

PG5,3 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦ (45)

Then, C5[l] is defined as follows:



C5[l] =

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 W5 W 2

5 W 3
5 W 4

5

1 W 2
5 W 4

5 W5 W 3
5

1 W 3
5 W5 W 4

5 W 2
5

1 W 4
5 W 3

5 W 2
5 W5

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

1 W5 W 4
5 W 4

5 W5

1 W 2
5 W5 W 2

5 1
1 W 3

5 W 3
5 1 W 4

5

1 W 4
5 1 W 3

5 W 3
5

1 1 W 2
5 W5 W 2

5

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

1 W 2
5 W 3

5 W 3
5 W 2

5

1 W 3
5 1 W5 W5

1 W 4
5 W 2

5 W 4
5 1

1 1 W 4
5 W 2

5 W 4
5

1 W5 W5 1 W 3
5

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

1 W 3
5 W 2

5 W 2
5 W 3

5

1 W 4
5 W 4

5 1 W 2
5

1 1 W5 W 3
5 W5

1 W5 W 3
5 W5 1

1 W 2
5 1 W 4

5 W 4
5

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

1 W 4
5 W5 W5 W 4

5

1 1 W 3
5 W 4

5 W 3
5

1 W5 1 W 2
5 W 2

5

1 W 2
5 W 2

5 1 W5

1 W 3
5 W 4

5 W 3
5 1

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦ (46)

The PG5,3 · C5[l] · P−1
G5,3

expression is computed as follows:

C5r[l] =

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 W5 W 2

5 W 4
5 W 3

5

1 W 2
5 W 4

5 W 3
5 W5

1 W 4
5 W 3

5 W5 W 2
5

1 W 3
5 W5 W 2

5 W 4
5

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

1 W5 W 4
5 W5 W 4

5

1 W 2
5 W5 1 W 2

5

1 W 3
5 W 3

5 W 4
5 1

1 1 W 2
5 W 2

5 W5

1 W 4
5 1 W 3

5 W 3
5

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

1 W 2
5 W 3

5 W 2
5 W 3

5

1 W 3
5 1 W5 W5

1 W 4
5 W 2

5 1 W 4
5

1 W5 W5 W 3
5 1

1 1 W 4
5 W 4

5 W 2
5

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

1 W 3
5 W 2

5 W 3
5 W 2

5

1 W 4
5 W 4

5 W 2
5 1

1 1 W5 W5 W 3
5

1 W 2
5 1 W 4

5 W 4
5

1 W5 W 3
5 1 W5

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

1 W 4
5 W5 W 4

5 W5

1 1 W 3
5 W 3

5 W 4
5

1 W5 1 W 2
5 W 2

5

1 W 3
5 W 4

5 1 W 3
5

1 W 2
5 W 2

5 W5 1

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦ (47)

The transformation matrix H5 for the C5r[l] expression results in,

H5[l] =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 W−l

5 0 0 0
0 0 W−4l

5 0 0
0 0 0 W−l

5 0
0 0 0 0 W−4l

5

⎤
⎥⎥⎥⎥⎦ (48)

where the inner matrix is:

C′
5[l] =

⎡
⎢⎢⎣
W5 W 2

5 W 4
5 W 3

5

W 2
5 W 4

5 W 3
5 W5

W 4
5 W 3

5 W5 W 2
5

W 3
5 W5 W 2

5 W 4
5

⎤
⎥⎥⎦ (49)

This result relates to several methods for computing Hankel matrix-vector products presented by Gumerov.5

Thus,

C5r[l] = PG5,3 · C5[l] · P−1
G5,3

(50)

C5[l] = P−1
G5,3

· C5r [l] · PG5,3 (51)

Now, the matrix-vector product for the signal data results in



C5[l] · x[n] = P−1
G5,3

· C5r[l] · PG5,3 · x[n] (52)

As a general formulation, for N any prime number, the following theorem is stated

Theorem 8.2. If N is a prime number and k an integer generator of
GN,k =

{〈
k1

〉
N
,
〈
k2

〉
N
,
〈
k3

〉
N
, ....,

〈
kN−1

〉
N

}
, then

CN [l] = P−1
GN,k

· CNr[1] ·HN [l] · PGN,k
(53)

Proof. The proof of the theorem is presented by direct computation, in the following manner:

The permutation operation is defined as:

σGN,k
=

[
0 1 2 3 · · · N − 1
0

〈
k1

〉
N

〈
k2

〉
N

〈
k1

〉
N

· · · 〈
kN−1

〉
N

]

And the transformation matrix HN [l] is:

HN [l] = PGN,k
·

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 W−l

N · · · 0

0
...

. . .
...

0 0 · · · W
−(N−1)2l
N

⎤
⎥⎥⎥⎦ · P−1

GN,k
(54)

9. CONCLUSSION

This work centered on the use of computational signal algebra techniques for the design and development of
discrete chirp Fourier transform (DCFT) algorithms for active remote sensing applications such as synthetic
aperture radar signal processing. The DCFT algorithms were formulated using Kronecker products algebra, a
branch of finite dimensional multilinear algebra. Group theoretic properties of input and output indexing sets
were utilized for the decomposition of matrix representations of DCFT formulations. algorithm implementations
were conducted on high performance clusters for very long discrete complex signals modeling multicomponent
chirp signal returns.
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