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Abstract— A useful processing tool for time-frequency signals
known as the Discrete Chirp Fourier Transform (DCFT) and
its implementation using cluster computers for application to
RADAR signal analysis. A time-frequency signal is defined as
a signal whose spectral distribution changes with time. Chirp
signals, as time-frequency signals which are linearly frequency
modulated, are widely used in many detection, estimation,
and imaging RADAR applications. DCFT implementations for
RADAR systems provide important information about the na-
ture of radar signals and allow to determine certain spectral
characteristics used in signal detection and estimation processes.

Index Terms— Chirp Transform, MPI Cluster , Fast Transform
.

I. INTRODUCTION

THIS his work concentrates on the analysis, design, and
implementation of efficient algorithms for the computa-

tion of the DCFT. A DCFT can be thought of as the discrete
Fourier transform(DFT) of a signal which has being multiplied
by a chirp signal and, hence, being shifted in the spectral
domain. The algorithms involve mathematical tools, such as
Kronecker products algebra and finite abelian group theory in
order to express DCFT in terms of factored composition of
sparse matrices. A DCFT takes a one-dimensional signal in
the object domain and returns a two-dimensional signal in the
chirp transform or spectral domain. Two cases have been used
for DCFT algorithm development. A first case is (Fast Fourier
Transform) FFT-like and expresses the DCFT when the lenght
is a composite number. A second case we treat when the lenght
of the signal is a prime number.

A. Chirp Fourier Transform

The 1-D DCFT [1] is defined as:

Xc[k, l] =
1√
N

N−1∑
n=0

x[n]W ln2+kn
N , 0 ≤ k, l ≤ N − 1 (1)

From the definition of the DCFT two parameters (l and k)
are into equation 1. The k parameter is the same parameter of
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the Discrete Time Fourier Transform(DTFT). The l parameter
generates an ln2 product resulting in a new independent
variable of the transform function. This expansion means more
products and finally a higher computational effort.

B. Kronecker Product Definition

Let A be an n × p matrix and B an m × q matrix.

A =

⎡
⎢⎢⎢⎣

a0,0 a0,1 . . . a0,p−1

a1,0 a1,1 . . . a1,p−1

...
...

. . .
...

an−1,0 an−1,1 an−1,p−1

⎤
⎥⎥⎥⎦ (2)

then,

A⊗B =

⎡
⎢⎢⎢⎣

a0,0 · B a0,1 · B · · · a0,p−1 · B
a1,0 · B a1,1 · B · · · a1,p−1 · B

...
...

. . .
...

an−1,0 · B an−1,1 · B · · · an−1,p−1 · B

⎤
⎥⎥⎥⎦

m·n×p·q
(3)

The m · n × p · q matrix is called the Kronecker product
of A and B. It is also called the direct product or the tensor
product.

An important property of the Tensor product is that for
conforming matrices, (A ⊗ B)(C ⊗ D) = AC ⊗ BD.

C. FFT Representation in Terms of Kronecker Product

By definition the Discrete Time Fourier Transform (DTFT)
is defined as:

X [k] =
1√
N

N−1∑
n=0

W kn
N

︸ ︷︷ ︸
F (N)

x[n] , 0 ≤ k ≤ N − 1 (4)

And the DTFT of the sequence x[n], is defined for the
following matrix-vector product.

X = F (N) · x (5)
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Using group theory and Kronecker product the F (N) matrix
is possible be expressed by the following expression [2]:

If N=RS, then:

F (N) = (F (R) ⊗ IS)TR,S(IR ⊗ F (S))PN,R (6)

This is a simplification because we are representing a high
order F (N) in terms of the lower order matrices F (R) and
F (S).

D. Definition of the Multiplicative Group Permutation Matrix

Let υ denote the following function.

υ : Z
×
7 −→ G7,5

k �−→ υ(k) ≡ 〈
5k

〉
7

(7)

Thus, following the natural order of Z
×
7 , we obtain

G7,5 =
{〈

51
〉
7
,
〈
52

〉
7
,
〈
53

〉
7
,
〈
54

〉
7
,
〈
55

〉
7
,
〈
56

〉
7

}
G7,5 = {5 4 6 2 3 1}

Using the prescribed order of G7,5 to index the rows and
columns of the table, except for column zero or row zero. The
number 5 is known as a generator of (Z/7Z)x This is the
same that apply the following permutation matrix [3]:

PG7,5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

II. DCFT REPRESENTATION AS A MATRIX-VECTOR

PRODUCT

The equation 1, could be rewritten as a matrix-vector
product for the specific case N = 8.

Xc[k, l] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F(8)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0]
x[1]W l

N

x[2]W 4l
N

x[3]W 9l
N

x[4]W 16l
N

x[5]W 25l
N

x[6]W 36l
N

x[7]W 49l
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

And in a general form for length N.

Xc[k, l] = F (N) · [x[n] �N W ln2

N ] (10)

where � denotes Haddamard product.

A. Volumetric Representation of the DCFT

In the same way as the DTFT can be seen as a matrix-
vector product, the DCFT can be seen as a product of a Cubic
matrix-vector product. See figure 1.

Fig. 1. Index variation

Expanding the N x N x N Chirp cube we have a layer
representation in terms of the l index. The C4[l] is defined as
follow:

C4[l] =

⎡
⎢⎢⎣

⎡
⎢⎢⎣

1 1 1 1
1 W4 W 2

4 W 3
4

1 W 2
4 1 W 2

4

1 W 3
4 W 2

4 W4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 W4 1 W4

1 W 2
4 W 2

4 1
1 W 3

4 1 W 3
4

1 1 W 2
4 W 2

4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 W 2
4 1 W 2

4

1 W 3
4 W 2

4 W4

1 1 1 1
1 W4 W 2

4 W 3
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 W 3
4 1 W 3

4

1 1 W 2
4 W 2

4

1 W4 1 W4

1 W 2
4 W 2

4 1

⎤
⎥⎥⎦

⎤
⎥⎥⎦ (11)

III. FFT-LIKE APPROACH TO THE DCFT

Is important note that:

C4[1] = F (4) =

⎡
⎢⎢⎣

1 1 1 1
1 W4 W 2

4 W 3
4

1 W 2
4 1 W 2

4

1 W 3
4 W 2

4 W4

⎤
⎥⎥⎦ (12)

Now considering the Permutation Matrix P4,2

P4,2 =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ (13)

We can apply this transformation to the rows and columns of
the whole Chirp Matrix (equation 11), we obtain the following
result:

C4P [l] = P−1
4,2 · C4[l] · P4,2 (14)
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C4P [l] =

⎡
⎢⎢⎣

⎡
⎢⎢⎣

1 1 1 1
1 1 W 2

4 W 2
4

1 W 2
4 W4 W 3

4

1 W 2
4 W 3

4 W4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 1 W4 W4

1 1 W 3
4 W 3

4

1 W 2
4 W 2

4 1
1 W 2

4 1 W 2
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 1 W 2
4 W 2

4

1 1 1 1
1 W 2

4 W 3
4 W4

1 W 2
4 W4 W 3

4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 1 W 3
4 W 3

4

1 1 W4 W4

1 W 2
4 1 W 2

4

1 W 2
4 W 2

4 1

⎤
⎥⎥⎦

⎤
⎥⎥⎦ (15)

And now multiplying each one of the matrices of the
equation 15 for the following Transformation Matrices:

Γ4,2[l] =

⎡
⎢⎢⎣

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 W 0

4 0
0 0 0 W 0

4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 W 1

4 0
0 0 0 W 1

4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 W 2

4 0
0 0 0 W 2

4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 W 3

4 0
0 0 0 W 3

4

⎤
⎥⎥⎦

⎤
⎥⎥⎦ (16)

Γ4,2[l] =
[[

1 0
0 W 0

4

]
⊗ I2,

[
1 0
0 W 1

4

]
⊗ I2,

[
1 0
0 W 2

4

]
⊗ I2,

[
1 0
0 W 3

4

]
⊗ I2

]
(17)

Γ4,2[l] =
[

1 0
0 W l

4

]
⊗ I2 (18)

= Γ′
4,2[l] ⊗ I2 (19)

We must take notice of equation 12 that:

C4P [l] = C4P [1] · Γ4,2[l]
C4P [l] = P−1

4,2 · C4[1] · P4,2 · Γ4,2[l]

P−1
4,2 · C4[l] · P4,2 = P−1

4,2 · C4[1] · P4,2 · Γ4,2[l]

C4[l] = P4,2 · P−1
4,2︸ ︷︷ ︸

I4

·C4[1] · P4,2 · Γ4,2[l] · P−1
4,2

C4[l] = F4 · P4,2 · Γ4,2[l] · P−1
4,2 (20)

But using equation 6,

F4 = (F2 ⊗ I2) · T2,2 · (I2 ⊗ F2) · P4,2 (21)

And replacing in 20

C4[l] = (F2 ⊗ I2)T2,2(I2 ⊗ F2)P4,2 · P4,2︸ ︷︷ ︸
I4

·Γ4,2[l]P−1
4,2

= (F2 ⊗ I2)T2,2(I2 ⊗ F2) · Γ4,2[l]P−1
4,2

= (F2 ⊗ I2)T2,2(I2 ⊗ F2) · (Γ′
4,2[l] ⊗ I2) · P−1

4,2

By direct computation, a general form for the CN [l] can be
obtained using the following theorem:

Theorem 1: If N is power of 2.

CN [l] = (FN
2
⊗ I2)T N

2 ,2(Γ
′
N,2[l] ⊗ F2) · P−1

N,2 (22)

Where,

Γ′
N,2[l] =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 W l

N · · · 0

0
...

. . .
...

0 0 · · · W
( N

2 −1)2l

N

⎤
⎥⎥⎥⎦ ⊗ I2 (23)

IV. DCFT FOR PRIME NUMBER OF SAMPLES

For N=5. From definition I-D, we found that 3 is a generator
of G5,3.

G5,3 =
{〈

31
〉
5
,
〈
32

〉
5
,
〈
33

〉
5
,
〈
34

〉
5

}
G5,3 = {3 4 2 1}

This define the following permutation matrix:

PG5,3 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦

(24)

The C5[1] is defined as:

C5[1] =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 W5 W 2

5 W 3
5 W 4

5

1 W 2
5 W 4

5 W5 W 3
5

1 W 3
5 W5 W 4

5 W 2
5

1 W 4
5 W 3

5 W 2
5 W5

⎤
⎥⎥⎥⎥⎦

(25)

Applying the permutation matrix PG5,3 to all the rows and
columns of the C5[l] matrix we obtain the C5r[l] matrix.

C5r [l] = PG5,3 · C5[l] · P−1
G5,3

(26)

for l = 0 we got,

C5r[1] =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 W5 W 2

5 W 4
5 W 3

5

1 W 2
5 W 4

5 W 3
5 W5

1 W 4
5 W 3

5 W5 W 2
5

1 W 3
5 W5 W 2

5 W 4
5

⎤
⎥⎥⎥⎥⎦

(27)

The matrix above is interesting because if we eliminate the
first row and column, leave a Hankel matrix.

To the other layers can be expressed in terms of the l = 0
, with the use of the transformation matrix H5 defined by,

H5[l] =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 W−4l

5 0 0 0
0 0 W−l

5 0 0
0 0 0 W−4l

5 0
0 0 0 0 W−l

5

⎤
⎥⎥⎥⎥⎦

(28)
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C5r[0] = C5r[l] · H5[l]
C5r[l] = C5r[0] · (H5[l])−1 (29)

Substituting in the 26 that,

C5[l] = P−1
G5,3

· C5r [0] · (H5[l])−1 · PG5,3 (30)

Now the matrix vector product for the data gives,

C5[l] · x[n] = {P−1
G5,3

· C5r[0] · (H5[l])−1 · PG5,3} · x[n] (31)

A lot of algorithms for the efficient computation of the
matrix vector product of a Hankel matrix and vector have been
developed [4].

By direct computation, a general form for the CN [l] can be
obtained using the following theorem:

Theorem 2: If N is a prime number and k an integer genera-
tor of GN,k =

{〈
k1

〉
N

,
〈
k2

〉
N

,
〈
k3

〉
N

, ....,
〈
kN−1

〉
N

}
, then

CN [l] = P−1
GN,k

· CNr[1] · HN [l] · PGN,k
(32)

Proof: We prove the above theorem by direct computa-
tion in the following manner.

The permutation operation is define as follows:

σGN,k
=

[
0 1 2 3 · · · N − 1
0

〈
k1

〉
N

〈
k2

〉
N

〈
k1

〉
N

· · · 〈
kN−1

〉
N

]

And the transformation matrix HN [l] is:

HN [l] = PGN,k
·

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 W−l

N · · · 0

0
...

. . .
...

0 0 · · · W
−(N−1)2l
N

⎤
⎥⎥⎥⎦ · P−1

GN,k

(33)

V. MPI IMPLEMENTATION OF THE DCFT

For the implementation of the DCFT in MPI Cluster we
have used the dataflow of the figure 2.

The implementation runs on IBM Linux Cluster with the
following specifications:

• Computing Nodes: 64 IBM xSeries Servers, dual proces-
sors

• Processors: 128 Intel Pentium III 1.26 GHz
• Memory: 53 GygaBytes
• Storage: 1 TeraByte
• Operating System: Linux RedHat 7.1
• Network: Ethernet Gigabit network and Cisco Switches

Several implementations in Matlab using PC was made and
the best results are compare with the Cluster implementation
of the DCFT.

Fig. 2. Flow of MPI implementation

TABLE I

BENCHMARK TIME COMPARISON FOR CLUSTER IMPLEMENTATION

Samples Sequential Parallel
Implementation Implementation

(seconds) (seconds)
64 .06 0

128 .23 0.05
256 .90 0.21
512 3.64 0.97
1024 14.92 4.19
2048 62.11 17.72
4096 Out of mem 74.06
8192 Out of mem 310.20

VI. CONCLUSION

The work that has been made in the development of DCFT
algorithms is an useful issue. The case for prime numbers is
special and is very interesting because the detection of the
Chirp signal parameters is not an easy problem.

The formulation that have been made in this paper could be
considered for implementation in other computational struc-
tures different to PC or cluster, for example Embedded systems
or Field Programmable Gate Array (FPGA).
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