
 1

University of Puerto Rico

Mayaguez Campus

Mayaguez, PR

Electrical and Computer Engineering Department

NetTraveler User Guide

University of Puerto Rico, Mayagüez

7-Dec-06

Angel L. Villalaín-García (std. #802-00-8413)

 2

1. NETTRAVELER INTRODUCTION ... 3

2. INSTALLING NETTRAVELER .. 6

1. SYSTEM REQUIREMENTS... 6
• Java 2 Standard Edition 5.0 .. 6
• Apache Tomcat.. 6
• PostgreSQL ... 6
• Eclipse ... 7

2. DATABASE SETUP ... 7
3. INSTALLING NETTRAVELER .. 8

• Catalog Information (See appendix) ... 8
• Data Source Setup ... 11
• Other Important Configuration Files .. 12
• Configuring Services ... 13

1. RUNNING THE DEMO... 16

1. RUNNING THE QUERY BROWSER .. 16
2. USING NETTRAVELER WEBAPP .. 18

APPENDIX ... 21

 3

1. NetTraveler Introduction

NetTraveler is a Distributed Database Middleware System designed for Wide

Area Networks environment. NetTraveler middleware system will provide:

• Mechanism for heterogeneous data source integration.

• Efficient query execution:

o Over remote sites that are either mobile clients or enterprise

servers

o By parallel execution

o Load balancing

The NetTraveler architecture is composed of several server applications

implemented as a Java Web Services (see Figure 1). NetTraveler could be seen as

a network of federations.

Figure 1 NetTraveler Architecture

 4

Each federation is composed of a set of Query Service Brokers (QSB), a set of

Information Gateways (IG), a set of Data Synchronization Servers (DSS), a

Registration Server (RS), and the Data Processing Server (DPS). The QSB could

be seen as a general purpose query engine, as depicted on Figure 2. It is composed

of almost all of the functionality of traditional DBMS query engine, parser,

optimizer, operators, but it lacks the actual access to the data. The QSB is in fact

the entrance, or the current mechanism to interact with the DMS, is the service in

charge of processing query sent to it, and could interact with another QSB, to

solve a specific query, in a P2P fashion. The IG provides access to the data. The

IG could then be see as the mechanism that implements all of the actual work

done by the lower levels presented on Figure 2. The DSS service provides client

query recovery mechanism. In case of a client failure the DSS would act as a

proxy for the client. When the client returns it would ask the DSS for the results.

The RS is an extended catalog manager that also has the responsibility of

coordinating the system among federations. And at last the DPS which is a

mechanism for interfacing grid services or sensors systems. For our proposed

Query Execution engine we will focus our strength on two of the main

components of NetTraveler, the Query Service Broker (QSB) and the information

Gateway (IG).

Figure 2 DBMS Architecture

 5

NetTraveler is platform independent, it runs on Linux, Windows, MacOS. Current

status of NetTraveler provides only support for JDBC compliance DBMS.

 6

2. Installing NetTraveler
You can download all the NetTraveler code from various locations:

• WALSAIP Website

• CVS Build

o This version contains always the current status of the project

although it is on testing stage. If you would like to have access to

the up to date version please use this configuration on eclipse for

setting up a cvs.

� Host: icarus.ece.uprm.edu

� Path: /home/avillan/ntdemosource/

� User: avillan

� Password: sharp-rash

� Connection type: extssh

� Port: default CVS port.

o In this case you will have to select at last projects, NetTraveler

project and the Query Browser project if you like to use it as an

example.

• Both versions will require you to import it on eclipse.

1. System Requirements

• Java 2 Standard Edition 5.0

1. Download J2SE 5.0 from http://java.sun.com according to your

platform.

2. Follow the installation instructions according to your platform

from http://java.sun.com/j2se/1.5.0/install.html.

• Apache Tomcat

1. Download Apache Tomcat from http://tomcat.apache.org. (From

version 5.x on)

2. Follow the installation instruction according to your platform and

the version of Apache Tomcat you choose from the following site

http://tomcat.apache.org/tomcat-x.x-doc/setup.html, where “x.x”

corresponds to the version in use.

• PostgreSQL

1. Although PostgreSQL is our choice you could also install any

other DBMS that provides support for JDBC technology. On that

case please refer to your documentation for any problems.

2. Download PostgreSQL from http://www.postgresql.org/ftp/binary/

and select the version that you want to download (we recommend

version 8.x.x on). Be sure to remember the version because that

would be of used when setting up the jdbc libraries.

 7

3. There are several installation guides for PostgreSQL available on

their website, http://www.postgresql.org/docs/techdocs.4.

• Eclipse

1. Download Eclipse 3.2 from http://www.eclipse.org and

uncompressed the file on the destination of your choice.

2. Database Setup

Once you have downloaded the code, on the location you used for storing it,

please look for a folder called “<user.path>\database”, where <user.path> is

the location where you save code (see figure 3).

Figure 3 Database Scripts Folder

1. Inside it, there is a file called “nt_meta.sql”. This file contains the

definition of the database that we need to create for the system.

2. So first, once you have installed and created a user on your DBMS of

choice, please create a DB called “nt_meta” for example.

With PostgreSQL:

Figure 4 Creating Database nt_meta

3. Once created, and according to the documentation of your DBMS, execute

the “nt_meta.sql” script to create all the needed relations for the nt_meta

DB, and for the current version of the catalog.

Figure 5 Execution of nt_meta.sql script

4. Please refer to your DBMS documentation in order to assure and

configure your DBMS for accepting connection from remote sites,

because the process we are showing you requires additional machines in

order to configure and deployed a small NetTraveler federation.

 8

3. Installing NetTraveler

• Catalog Information (See appendix)

The Catalog contains several tables used for storing all the metadata

concerning to services, relation between services and the remote data

sources. Is important to define each relation in order to understand what it

is needed to store in each one in order to fully configure the system.

First we begin with the relation Site. Each site or service that you want to

define in the system will need a record stored in this relation.

The id field represents the ID assigned to a service. It must be unique, and

right now it must be assigned manually. The ip field as its name implies is

the IP of the host where the service relies. The type field represents the

type of service that is being registered, if it is a QSB the value must be 0,

if it is an IG it must be 1, and DSS 2. The rest of the services are not taken

into consideration right now. The port, the port number in which tomcat is

running, and the impl field references the implementation of each service.

Right now they are implemented only as Web Services, and the value

must be 0 then (see Figure 6).

Figure 6 Defining QSB with ID = 9

Peer relation is the next important table. This relation defines the relation

between two services that are peers. Peer relation is bidirectional. Hence if

a service A is peer of a service B then B is also a peer of A. To maintain

this relation, there will be two records peer each peer relation. Each field

references the ID of each service.

Figure 7 QSB 9 and QSB 10 peer definition

Table knows represents the relation of known IG for each QSB. It is

important to understand that each field on this table represents the ID of

each corresponding service, qsb field referencing the ID of a QSB and ig

field its corresponding ID.

 9

Figure 8 QSB 9 is knows IG 10

Table relation has the name of each relation on each remote data source.

ID field is the id we assigned to each relation, the name field the name of

the relation.

Figure 9 Defining the students table

Table attribute stores the metadata concerning to each relation, in fact it

defines each field for each relation. The only field that it is needed to

explain in depth is the type field. For more information on the value for

this field please refer to the javadoc of java.sql.Types. The rest define the

id of each column, the relation id, the name of the field and the position.

Figure 10 Example attribute table and its info

Other important relation is the table keys that store the information of

which attribute is a key.

Figure 11 Example definition of a key for a table

The replication_meta relation only stores the information concerning on

the number of partitions for each replica.

Figure 12 Example for specifying that there is a table with 6 buckets

The site_stats table stores information concerning to the actual status of

each site, resources, availability, etc.

 10

Figure 13 Definition of site_stats table

The last relation is the Store relation. It defines which remote site provides

access to that relation. Rid references the id of the relation, sid references

the site id of the IG which provides access to that relation.

Figure 14 IG 10 provides access to relation 1

Once the nt_meta database has the necessary information, another step we

need to perform is to configure the access to this database. Inside the

package edu.uprm.admg.nettraveler.catalag there is a property file called

catalog.properties. This file must be edited with the information

concerning the access to your local DBMS where the nt_meta DB relies.

Figure 15 Catalog Properties

ds.driver variable must contains the class implementing the driver for

your DMBS. In our case we are using the postgresql driver.

ds.uri variable must point the correct URI for the database. Here is where

you can choose to change nt_meta as the name for the catalog and use

other instead.

ds.login variable must be the user name and ds.password the password

corresponding to that user name.

ds.connection variable represents the number of connections that our

system would keep opened to the databases.

ds.transaction defines the transaction level. Leave it on 8 by default.

ds.autocommit defines if the transaction must be immediately committed.

By default again, leave the default value.

 11

Figure 16 Catalog.properties

• Data Source Setup

Open the file ds.properties placed inside WebContent\WEB-INF\conf\

(see Figure 17). The file structure is similar to file catalog.properties

shown above. The only difference is the ds.type. This variable is must be

left with the default value. The rest of the variables represent the same

information as presented above. In this case the information must

correspond to the data source that we want to integrate.

Figure 17 ds.properties location

 12

Figure 18 ds.properties file

• Other Important Configuration Files

Under WebContent\WEB-INF\conf\xsdtemp\ you can find several xml

schema file definitions (XSD). This xml schema defines several aspects,

from tables, operations, and resources, to actually completely define each

service. They represent the next step in order to integrate all

configurations within a single entity.

Figure 19 XSD Files

Right now, the XSD files are not being used for that purpose, they only

serve as a mechanism for defining remote services, which we needed to

 13

take into consideration for our scheduling testing purposes. For that

reason, for each remote IG site, that we want to incorporate we need to

add a representation for that site on this folder. Please read one of the

many igsite.xml files in order to understand the structure of the XSD (see

appendix).

• Configuring Services

Once you have configured the catalog, set up the information of how to

access the catalog, and configure the data source access mechanism, you

are ready to deploy a service of NetTraveler. But in order to do that you

first need to define which service you want to deploy. Before you do it,

take your time and open the file ServiceSchema.xsd file place on

“WebContent\WEB-INF\conf\”. Please read the documentation on it in

order to understand the information needed for starting and defining a

service.

Figure 20 ServicesSchema.xsd

But if you want to avoid that step, you can go directly to the file

servicesdef.xml inside the same folder. The minimum information that you

need to change is those values concerning the IP, the Port and the type of

service that you wish to deploy. So if you want to deploy an IG please

modify the type parameter and write “IG”. The same goes for QSB and

DSS.

Figure 21 servicedef.xml

 14

Again if you want a better understanding of the other parameters please

refer to the ServiceSchema.xsd file. Figure 22 shows the configuration for

a QSB that is running on port 8090 and with IP 136.145.116.97.

Figure 22 servicedef.xml example

Once you have done that press right click over the name of the project to

display a popup menu (Figure 23). Select Export option.

Figure 23 Exporting project

The next dialog will ask you to choose from several different options,

please under web, select WAR file (as shown on Figure 24).

 15

Figure 24 War File Selection

Once selected this option please, write the name of the war file,

(nettraveler.war) and choose to finish the export process, see Figure 24.

Figure 25 Finishing export process

The last step would be to deploy this generated war file on Tomcat. To

deploy it on Tomcat, copy the war file to <TomcatPath>\webapps. Once

you restart Tomcat the service would be available. The next steps would

be to configure runtime configurations for each service, but that is part of

the next section which explains how to run and use the demo.

Please feel free to test and run each of the programs under the

edu.uprm.admg.nettraveler.test, to finally test your configuration.

One important aspect is that current NetTraveler implementation defines

that for each given service there is an instance of Tomcat. So for each

QSB you will need another Tomcat server. Current implementation relies

on having a single Tomcat server for each service.

 16

1. Running the Demo

1. Running the Query Browser

• In order to run the system please, press right click on the

QueryBrowser.java and select Run As → Java Application, (see Figure

26).

Figure 26 Running Query Browser Client

• The next screen that will appear is the Figure 27. On window you will

have to specify the parameters to connect to where the catalog is running

in order to have access to see the schema and to select which of the QSB

you are running on your system would be the entrance to the client.

Figure 27 Query Browser Configuration Windows

 17

Figure 28 Query Browser

• Once you have the configuration correctly the next window that will

appear will be the main window (Figure 28 and 29) you will see several

areas. To your right, you will find the metadata concerning to your

relations. On the upper side you will see a text area where you can submit

your queries to the system, and on the center of the screen you will see the

results.

 18

2. Using NetTraveler Webapp

• Another important aspect is web based. This interface is useful for setting

up some runtime configurations and to set up some actions that would

have effects on the data sources, for example managing replicated data

sets (partitioning data). Figure 29 shows the login screen. To manage the

users that can admin the systems please modify the file users.xml that

could be found on WebContent\WEB-INF\sec\ (Figure 30).

Figure 29 Login Screen

Figure 30 users.xml

 19

Figure 31 Service Management UI

• Once you have successfully log in, you will face the service management

interface. In this interface you will have to decide to possible options 1)

starting/stopping the service and 2) configure it.

Figure 32 QSB Configuration UI

 20

• Depending on the service you are connected it will display different

configurations. Figure 32 shows the different configuration selection for a

selected QSB. For an IG the configuration would be different and it is

only for configuration of the number of buckets for a specific relation.

Figure 33 Deployed Service List

• On the left side of the webpage there is a menu, which shows you two

options. The first one “Customize Service” it takes you to the

configuration screen for the current service. If you select the second option

“Current Deployed System” will provide you with a mechanism for

knowing which services are available and access to each one of the service

for configuration purposes.

• As you can see this is a mere proof of concepts. This is only a UI for

testing, and tutorial purposes. See source code if you are interested in

interfacing your own applications with NetTraveler.

And that’s the general information that you need to understand in order to run

NetTraveler. For any doubts or comments, please feel free to contact me at

angel.villalain@ece.uprm.edu

 21

Appendix
**

* nt_meta.sql *

**
-- Site table. Info about the data sources sites.

-- id = ID of the service

-- type = Type of service (IG=, DSS=, QSB=)

-- ip = IP address of the service

-- port = Port where the service is listening

-- impl = Implementation type of the service. (Web service, sockets)

create table site(

 id varchar(15) not null CHECK (id > 0),

 type int not null,

 ip varchar(40) not null,

 port int not null default 8080,

 impl int not null,

 primary key (id)

);

-- Table of peers.

-- States a relation between two services that are peers.

-- Peerism is bidirectional. Hence if a service A is peer of

-- a service B then B is also a peer of A. To maintain this

-- relation, there will be two records peer each peer

-- relation.

create table peer(

 s1 varchar(15),

 s2 varchar(15) ,

 primary key(s1, s2),

 foreign key (s1) references site(id) on delete cascade,

 foreign key (s2) references site(id) on delete cascade

);

-- This table tells which QSBs know which IGs

create table knows(

 qsb varchar(15) ,

 ig varchar(15) ,

 primary key(qsb, ig),

 foreign key (qsb) references site(id) on delete cascade,

 foreign key (ig) references site(id) on delete cascade

);

-- Catalogs metadata

--create table catalog(

 -- id int not null CHECK (id > 0),

 -- name varchar(100) not null,

 -- primary key(id)

--);

-- Metadata of relations

create table relation(

 id int not null CHECK (id > 0),

 name varchar(100) not null,

 primary key(id)

 22

);

-- Holds the attributes of every relation

create table attribute(

 id int not null CHECK (id > 0),

 rid int,

 name varchar(100) not null,

 type int not null,

 pos int not null CHECK (pos >= 0),

 primary key (id),

 foreign key (rid) references relation (id) on delete cascade

);

-- Key table

-- Tells the attribute that is unique for a relation in

-- a site

create table keys(

 id int not null CHECK (id > 0),

 aid int not null,

 cid int not null,

 isKey boolean not null,

 primary key(id),

 foreign key(aid) references attribute(id) on delete cascade,

 foreign key(cid) references catalog(id) on delete cascade

);

create table replication_meta(

 rid int not null,

 numbuckets int not null,

 foreign key(rid) references relation (id) on delete cascade

);

create table site_stats(

 minvalue double not null,

 maxvalue double not null,

 perprocess double not null,

 rtype integer not null,

 id varchar(15) not null,

 foreign key(id) references site(id) on delete cascade

);

create table store(

 rid int not null,

 sid varchar(15) not null,

 primary key (rid, sid),

 foreign key (rid) references relation(id) on delete cascade,

 foreign key(sid) references site(id) on delete cascade

);

 23

**

* igsite1.xml *

**
<?xml version="1.0" encoding="UTF-8"?>

<tns:ServiceDef xmlns:db="http://nettraveler.admg.uprm.edu/DatabaseDef"

xmlns:pln="http://nettraveler.admg.uprm.edu/PlanOpsSchema"

xmlns:serv="http://nettraveler.admg.uprm.edu/ServiceSchema"

xmlns:table="http://nettraveler.admg.uprm.edu/TableDefSchema"

xmlns:tns="http://nettraveler.admg.uprm.edu/NettravelerSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://nettraveler.admg.uprm.edu/NettravelerSchema

nettraveler.xsd http://nettraveler.admg.uprm.edu/TableDefSchema

TableDefSchema.xsd http://nettraveler.admg.uprm.edu/ServiceSchema

ServiceSchema.xsd http://nettraveler.admg.uprm.edu/DatabaseDef

DatabaseDef.xsd http://nettraveler.admg.uprm.edu/PlanOpsSchema

PlanOpsSchema.xsd ">

 <ServiceIG>

 <SiteProf>

 <ID>1</ID>

 <URI>http://localhost:8091/nettraveler/qs</URI>

 <ip>136.145.116.97</ip>

 <port>8091</port>

 <type>IG</type>

 <impl>AXIS_1_4</impl>

 <siteprofile>

 <Type>MEMORY</Type>

 <MinValue>128</MinValue>

 <MaxValue>1024</MaxValue>

 <PerProcess>0.0</PerProcess>

 </siteprofile>

 <siteprofile>

 <Type>CPU</Type>

 <MinValue>0.4</MinValue>

 <MaxValue>0.8</MaxValue>

 <PerProcess>0.0</PerProcess>

 </siteprofile>

 <siteprofile>

 <Type>PROCESS</Type>

 <MinValue>0.2</MinValue>

 <MaxValue>0.6</MaxValue>

 <PerProcess>0.0</PerProcess>

 </siteprofile>

 <siteprofile>

 <Type>DISKACCESS</Type>

 <MinValue>0.1</MinValue>

 <MaxValue>0.3</MaxValue>

 <PerProcess>0.0</PerProcess>

 </siteprofile>

 <recoveryprofile/>

 </SiteProf>

<optimizer>edu.uprm.admg.nettraveler.optimizer.TestOptimizer</optimizer

>

 <allocation>1.3</allocation>

 <query>20</query>

 <result>10</result>

 24

 <idle>60000</idle>

 <thread>70000</thread>

 <reroute>5</reroute>

 <stats>false</stats>

 <Database>

 <HostName>ADMWS03</HostName>

 <ip>136.145.116.97</ip>

 <port>5432</port>

 <connections>1</connections>

 <DSType>RDBMS</DSType>

 <Driver>org.postgresql.Driver</Driver>

 <URI>jdbc\:postgresql\://127.0.0.1:5432/nettraveler</URI>

 <databaseName>nettraveler</databaseName>

 <userlogin>sharp</userlogin>

 <password>sharp-rash</password>

 <TransactionLevel>8</TransactionLevel>

 <autocommit>true</autocommit>

 <IG>IG</IG>

 <Table>

 <TableName>hashstudents</TableName>

 <Columns>

 <ColumnName>sid</ColumnName>

 <Type>

 <SourceType>int8</SourceType>

 <Size>0</Size>

<ImplType>edu.uprm.admg.nettraveler.type.MIInteger</ImplType>

 </Type>

 <isKey>true</isKey>

 <TableName>hashstudents</TableName>

 <Position>0</Position>

 <Schema>nont</Schema>

 </Columns>

 <Columns>

 <ColumnName>sname</ColumnName>

 <Type>

 <SourceType>varchar</SourceType>

 <Size>30</Size>

<ImplType>edu.uprm.admg.nettraveler.type.MIString</ImplType>

 </Type>

 <isKey>false</isKey>

 <TableName>hashstudents</TableName>

 <Position>1</Position>

 <Schema>nont</Schema>

 </Columns>

 <Columns>

 <ColumnName>sage</ColumnName>

 <Type>

 <SourceType>int8</SourceType>

 <Size>0</Size>

<ImplType>edu.uprm.admg.nettraveler.type.MIInteger</ImplType>

 </Type>

 <isKey>false</isKey>

 <TableName>hashstudents;</TableName>

 <Position>2</Position>

 25

 <Schema>nont</Schema>

 </Columns>

 <databaseName>nettraveler</databaseName>

 <Cardinality>0</Cardinality>

 <Owner>sharp</Owner>

 <ReplicationInfo>

 <TableName>hashstudents</TableName>

 <AllowReplication>true</AllowReplication>

 <NumBuckets>4</NumBuckets>

 </ReplicationInfo>

 </Table>

 </Database>

 <Operators>

 <Name>HashConstraints</Name>

 <Plan>

 <PlanName>HashAccessPlan</PlanName>

<ClassName>edu.uprm.admg.nettraveler.plan.HashAccessPlan</ClassName>

 </Plan>

 <Constraints>

 <Type>MEMORY</Type>

 <MinValue>128</MinValue>

 <MaxValue>1024</MaxValue>

 <PerProcess>0.0</PerProcess>

 </Constraints>

 <Constraints>

 <Type>CPU</Type>

 <MinValue>128</MinValue>

 <MaxValue>1024</MaxValue>

 <PerProcess>0.0</PerProcess>

 </Constraints>

 </Operators>

 </ServiceIG>

</tns:ServiceDef>

